Design and Implementation of a Chaos Injector
to Improve Resilience in MQTT-Based IoT
Systems

Pham Van Ha'!, Vu Viet Thang', Le Hong Vinh?, Nguyen Phuc Quynh Nhi?,
and Nguyen Thi Dieu Linh® *

! Hanoi University of Industry
{hapv,vuvietthang,nguyen.linh}@haui.edu.vn
2 Lam Son High School for the Gifted, Vietnam

lhvblog@gmail .com
3 Tanh Linh High School, Vietnam
nguyenphucqnhi@gmail.com

Abstract. The growing reliance on Internet of Things (IoT) systems for
smart homes, cities, industries, and healthcare has made resilience a crit-
ical concern. MQTT, a lightweight messaging protocol, is widely adopted
for these systems, but failures—particularly at the publisher level—can
lead to cascading system disruptions. This paper presents the design and
implementation of a chaos injector framework that mimics the concept
of vaccination in biological systems by introducing controlled chaos into
MQTT-based IoT systems. Our approach autonomously scans MQTT
topics and performs replay attacks, simulating data failures at the pub-
lisher level to strengthen the overall resilience of the system. The chaos
injector acts as a ”vaccine” for IoT, enabling the system to recognize,
respond to, and recover from real-world failures. By testing the tool in a
real smart office deployment, we uncovered system weaknesses and iden-
tified the underlying causes. Through this work, we contribute to the
development of more fault-tolerant and resilient MQTT infrastructures
using chaos engineering..

Keywords: MQTT, IoT, Chaos Engineering, Failure Simulation, Chaos
Injection

1 Introduction

MQTT (Message Queuing Telemetry Transport) has become a core commu-
nication protocol for modern IoT systems due to its lightweight, simple, and
effective design, as well as the ability to work on resource-constrained devices
[1]. As a result, MQTT has been used for a wide range of IoT systems, including
smart homes, industrial automation, smart cities, and environmental monitoring,
where reliable and scalable communication between devices is essential. However,

* Corresponding author

2 Pham Van Ha et al.

MQTT is also vulnerable to failure, where a misbehaving device can trigger a
chain of malicious behavior of other devices and disrupt entire systems. There-
fore, it is crucial to make MQTT-based IoT systems resilient to such failures.

Resilience refers to the ability of a system to maintain normal operations
and recover quickly in the event of failure [2]. Ensuring resilience requires exten-
sive tests under both normal and failure conditions. Traditional testing methods
focus on predefined test cases that assume certain normal conditions, but are
unable to handle unexpected failures. In contrast, chaos engineering [3] is a
methodology that injects failures into a system to discover potential weaknesses
(inject-and-learn) and has been successfully applied in large-scale commercial
systems such as Netflix, Amazon Web Services, and other cloud-based and mi-
croservice architectures.

The objective of this work is to bring the concept of chaos engineering to
IoT systems by proposing a Chaos Injector that simulates and injects a range
of failure scenarios in MQTT-based IoT environments. The original idea of this
paper is similar to how vaccines help the human body build immunity. Just as
a vaccine introduces a harmless version of a virus to train the immune system
to fight future infections, the chaos injector strengthens the resilience of IoT
systems in the same manner.

The contributions of this paper include: (i) an analysis of common data
failures in IoT devices and the simulation of such failures, (ii) a chaos engineering
tool for MQTT that can simulate and inject various types of data failure and
failure scenarios, and (iii) an evaluation of the proposed solution in a real-world
deployment.

2 Background and Related Work

2.1 MQTT and IoT Resilience

MQTT is a publish/subscribe (Pub/Sub) messaging protocol that enables asyn-
chronous communication between clients (devices). It uses a broker to distribute
messages from publishers, who connect to the broker and publish messages to
specific topics, to subscribers, who subscribe to topics of interest. As a result,
publishers and subscribers do not need to be aware of each other’s existence to
operate, which enhances the system’s flexibility and scalability.

— Publisher is an MQTT client that publishes a message to a topic. It plays
the role of a data producers.

— Subscriber is also an MQTT clients that subscribes to certain topics in
order to receive the data. It plays the roles of a data consumer.
Note: An MQTT client can be both publisher and subscriber.

— Broker is a central node that maintain the topics, receives messages from
publishers and distributes to all subscribed based on pre-registered topics.

The broker is often seen as the critical point for resilience and security, be-
cause of its central role in communication. Recent studies have focused primar-
ily on securing the MQTT broker to mitigate threats such as denial-of-service

MQTT Chaos Injection 3

(DoS) attacks, unauthorized access, and broker overloads. For example, authors
in [4] proposed a fault-tolerant MQTT architecture with redundant brokers to
enhance resilience. Other works, such as in [5] have explored adaptive security
mechanisms for broker protection. However, failures at MQTT clients, especially
publishers, have not been extensively addressed. In a typical system, applications
or services rely on data from publishers to create logic for tasks, like "If This,
Then That” scenarios. If a publisher fails, it can trigger a chain reaction of faults
across the entire IoT system. Therefore, applying chaos engineering to IoT de-
vices that function as MQTT publishers is essential for enhancing the overall
resilience of IoT the system.

2.2 Chaos Engineering

Chaos engineering has proven highly effective in improving the reliability of
cloud-native systems [6]. This success has led to multiple efforts to extend chaos
engineering practices to IoT environments. The following table provides a sum-
mary of tools that support chaos engineering for IoT systems.

Table 1. Non-Exhaustive List of Tools for Chaos Engineering

Tool Lave Host |Network|Application Works
YO | Faults| Faults Faults with
Chaos Toolkit * Cloud | Yes Yes No All cloud platforms
AWS FIS® Cloud | Yes Yes Yes AWS-Only
Azure Chaos Studio® Cloud | Yes Yes Yes Azure-Only
Gremlin” Cloud | Yes Yes Yes All coud platforms
Barebone MQTT Broker [7]| Edge | No Yes No MQTT clients
MicroChaos [8] IOT Yes Yes No RTOS only
Device
ToT Simulator [9] IOT Yes Yes No ECHONET Lite
Device Protocol
Chaos injector IOT Yes Yes Yes All MQTT brokers
Device

Overall, most tools focus on providing Failure as a Service (FaaS) at the cloud
layer. Major cloud service providers offer tools that allow system developers using
these cloud services to perform chaos engineering on their systems. The work in
[7] introduces a broker that simulates failure scenarios, such as injecting delays
or randomly dropping incoming and outgoing messages.

In contrast, the main focus of this work is at the device layer. The work in [8]
focuses on chaos engineering for a specific real-time operating system (RTOS).

4 https://chaostoolkit.org/

® https://aws.amazon.com/fis/

5 https://azure.microsoft.com/en-us/products,/chaos-studio
" https://www.gremlin.com/chaos-engineering

4 Pham Van Ha et al.

On the other hand, the approach in [9] is operating system-independent, which is
a significant advantage. However, it is tied to the ECHONET Lite protocol[10],
a protocol mainly used in Japanese smart homes only. The chaos injector
tool developed in this work will be independent of any operating system and
will utilize the widely used MQTT protocol, making it compatible with a broad
range of IoT use cases.

3 Proposed Solution: Chaos Injector Tool

In IoT systems that use the publish-subscribe paradigm (e.g., MQTT, Robot
Operating System), services consume data published by others to perform tasks,
activate actuators, or publish new data to relevant topics for further processing
by other services. Without safeguards, a single faulty data point can trigger a
chain of failures across the system. The primary goal of the proposed tool is
to scan all active topics and simulate replay attacks with chaotic data. This
allows developers to conduct chaos engineering for their systems. Similar to how
a vaccine strengthens the immune system, this tool injects chaos to enhance the
resilience and realiability of MQTT-based IoT systems.

Chaos Injector Tool

Data Collector Chaos Injector
Chaos
Subscriber Generator Publisher

Application Layer MQTT _5
+ | Transport Layer TCP g
Network Layer IPv4/ IPv6 %
[Link Layer Ethernet, WiFi, ... e

Operating System

Hardware

Fig. 1. Overall architecture of the Chaos Injector Tool. The tool is built on top of
the TCP/IP protocol stack, making it independent of both the operating system and
hardware

MQTT Chaos Injection

The overview of the main components of the chaos injector, as shown in Fig.
1, includes:

— Data Collector implements an MQTT subscriber that subscribes to all
topics on the broker and keeps track of the following information

e Active topic list: The list of active topics helps in targeting which
topics are currently being used to ensure that the tool works only on the

most relevant areas.

Data published to each topic: By keeping a record of the data being

published to each topic, we can simulate realistic failure scenarios by
introducing anomalies based on real data.

Frequency of data published in each topic: The frequency of mes-

sages on each topic allows us to introduce chaos that simulate high or
low message traffic, testing the system’s resilience under both normal

and stressful conditions.

— Chaos Generator targets data failures that can result from a range of
causes, such as technical malfunctions, human mistakes, software defects,
cyberattacks, natural disasters or hardware problems. The selected failure
scenarios [11] are detailed in Table 2.

— Chaos Injector implement an MQTT publisher that injects chaos into
active topics according to generated failure scenarios.

The injector has been implemented using Python and the mgtt_paho library,

which

supports MQTT version 5.

Table 2. Data Faults and Their Generation Strategies

Fault Description Injection Method
. A single, unexpected value that occurs frequently A pseudo-random value, generated randomly and

Noise/ |compared to normal measurements may be the result added to the original measurement. appears at a
Outlier |of hardware issues, such as an unstable sensor connection,|* seudo rar‘ldom E‘e uenc’v . » Appes

or external influences, like an electromagnetic pulse P a4 v
Offset/ |A constant value is either added to The sample is increased or decreased each time
Rotation|or subtracted from the output by a constant or random percentage of the actual value

ot of datapoints contains values differi . .

. S‘ Of Catapoiils CONtains va ues Citiering A peak in the value of data that rises and falls
Spike from expectations, typically due to supply .

{ssues or connection failurés symmetrically over a number of samples randomly
Stuck at [Values remain constant for a certain period, The value of data remains constant and is based on

value

which may indicate a malfunction of the sensor.

the first sample obtained after the command is executed

4 Usecase and Evaluation

4.1 Experimental Setup

To validate the effectiveness of the chaos injector, we deployed the tool into a
real smart environment that uses MQTT as the main communication protocol.
The smart office is currently working normally and has not been subjected to a
chaos engineering test before. The overview of the smart office is shown in Fig.2.

6 Pham Van Ha et al.

Visualization App (
Data Consumer)

=N
thign

Subscriber QY

Subscﬁbeﬁ
Topic: I#/

Sensors

Other smart
appliances

Temperature,
Humidity, Co2

Electric
Window x4

IF This THEN That

Fig. 2. Smart office experimental environment equipped with IoT devices communi-
cating via MQTT

The office is equipped with environmental monitoring sensors that measure
room temperature, humidity, and CO2 levels. These sensors publish data ev-
ery 30 seconds to the topics /office204/temp, /office204/humidity, and
/office204/co2, respectively. Additionally, there are four electrically operated
windows that can be controlled via the topic /office204/cmd/wid, where id
ranges from 0 to 3. The windows also report state changes (e.g., from open to
closed and vice versa) to the topic /office204/status/wid.

A dashboard application monitors the overall office status, displaying sensor
readings and the current state of the windows. There is also an automation
application that consumes sensor data (temperature, humidity, and CO2 levels)
and sends commands to open or close the windows to maintain a comfortable
environment for anyone in the room. For example, the system will open a window
if CO2 levels are high to improve ventilation or close the windows to retain
warmth in cooler conditions.

The chaos injector is deployed on a Raspberry Pi 4, configured with the
address and credentials of the MQTT brokers used by the smart office. Although
the broker serves other offices, only the topic /office204/# is targeted for chaos
engineering in this experiment.

4.2 Experiment Result: Autonomous Chaos Generation
The strategies for generating data faults based on collected data from active

topics are outlined in Table 2. For a data point d published to a topic t at
at frequency f, two types of random Noise/Outliers can be selected, along

MQTT Chaos Injection 7

with four types of Offset/Rotation faults, one type of Spike, and one Stuck
At Value fault. These faults are then injected into the broker at five different
frequencies, ranging from slow to very fast. In total, 40 variations can be gen-
erated from a single data point published to any topic. In this experiment, 440
chaos scenarios (11 topics) were generated via the autonomous chaos generation
methodology.

4.3 Chaos Injection

The results of the chaos injection experiment are summarized in Fig.3. For clearer
visualization, one chaos scenario per sensor data was selected for display in the
dashboard monitoring application. The CO2 level was simulated with both Spike
and Offset faults, the humidity value with an outlier fault, and the temperature
remained fixed at 26.2°C due to a ’stuck at value’ fault.

This visualized result confirms the correct operation of the chaos injector.
Despite the collected data being quite messy, the dashboard application func-
tioned as expected. However, the noisy data could not be used in its raw form,
leading to temporary data loss. To prevent similar issues in the future, devel-
opers could implement AI/ML models to detect anomalies and block abnormal
data from being injected into the database.

Offset Fault

Spike Fault

Outlier/ Noise Fault

Fig. 3. Chaos injection results as displayed in the dashboard application

However, the automation application that consumes sensor data to control
the windows was severely affected. Initially, the chaos injector failed to recog-
nize the active topics related to window control. But after injecting chaos into
the system with abnormally high CO2 levels, the automation application sent a

8 Pham Van Ha et al.

command to open the windows. This action was recorded by the chaos injector,
causing the window controller to open and close the windows in a dangerously er-
ratic manner, which could potentially damage the windows. Even after removing
the topics related to window control from the tool, the automation application
continued to perform the same harmful actions. By altering the CO2 data, es-
pecially using Spike data faults, the application repeated the erratic behavior,
potentially causing damage to the windows.

In summary, data faults have a minor impact on sensors but can severely
affect actuators. This highlights the need for system developers to prioritize
safeguarding actuators in MQTT-based IoT systems.

5 Conclusion

This paper presents a novel approach to improving resilience in MQTT-based
IoT systems through the design and implementation of a chaos injector tool. By
autonomously scanning active topics and injecting replay attacks, the proposed
solution mimics the concept of biological vaccination, exposing the system to
controlled chaos to build its ”immunity” against real-world malfunctions. The
fault injector provides valuable insights into publisher-side vulnerabilities and
contributes to the development of more robust, fault-tolerant IoT infrastructures.
As IoT systems continue to grow in complexity and scale, our work offers a
proactive approach to ensuring their resilience in the face of uncertainty.

References

1. Biswajeeban Mishra and Attila Kertesz. The use of mqtt in m2m and iot systems:
A survey. IEEE Access, 8:201071-201086, 2020.

2. Christian Berger, Philipp Eichhammer, Hans P. Reiser, Jorg Domaschka, Franz J.
Hauck, and Gerhard Habiger. A survey on resilience in the iot: Taxonomy, classi-
fication, and discussion of resilience mechanisms. ACM Comput. Surv., 54(7), sep
2021.

3. Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin
Reynolds, and Casey Rosenthal. Chaos engineering. IEEE Software, 33(3):35-41,
2016.

4. Edoardo Longo and Alessandro E.C. Redondi. Design and implementation of an
advanced mqtt broker for distributed pub/sub scenarios. Computer Networks,
224:109601, 2023.

5. Dan Dinculeana and Xiaochun Cheng. Vulnerabilities and limitations of mqtt
protocol used between iot devices. Applied Sciences, 9(5), 2019.

6. Amro Al-Said Ahmad, Lamis F. Al-Qora’n, and Ahmad Zayed. Exploring the
impact of chaos engineering with various user loads on cloud native applications:
an exploratory empirical study. Computing, 106(7):2389-2425, May 2024.

7. Miguel Duarte, Joao Pedro Dias, Hugo Sereno Ferreira, and Andre Restivo. Eval-
uation of iot self-healing mechanisms using fault-injection in message brokers. In
Proceedings of the 4th International Workshop on Software Engineering Research
and Practice for the IoT, SERP4IoT ’22, page 9-16, New York, NY, USA, 2023.
Association for Computing Machinery.

10.

11.

MQTT Chaos Injection 9

Wojciech Kalka and Tomasz Szydlo. uchaos: Moving chaos engineering to iot
devices. In Leonardo Franco, Clélia de Mulatier, Maciej Paszynski, Valeria V.
Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computa-
tional Science — ICCS 2024, pages 239-254, Cham, 2024. Springer Nature Switzer-
land.

Van Cu Pham, Yoshiki Makino, Khoa Pho, Yuto Lim, and Yasuo Tan. Iot area net-
work simulator for network dataset generation. Journal of Information Processing,
28:668-678, 2020.

Van Cu Pham, Toan Nguyen-Mau, Marios Sioutis, and Yasuo Tan. Matter and
echonet lite: Similarities, differences, and a bridge solution for interoperability.
Internet of Things, 27:101265, 2024.

Ghaihab Hassan Adday, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain, and
Normalia Samian. Fault tolerance structures in wireless sensor networks (wsns):
Survey, classification, and future directions. Sensors, 22(16), 2022.

